PRIMENESS IN NEAR-RINGS WITH
MULTIPLICATIVE SEMI-GROUP SATISFYING
‘THE THREE IDENTITIES’

A. O. ATAGÜN and N. J. GROENEWALD

Department of Mathematics
Bozok University
66100, Yozgat
Turkey
e-mail: aosman.atagun@bozok.edu.tr

Department of Mathematics
University of Port Elizabeth
6000
South Africa

Abstract
In this paper, the interconnections of completely prime, 3-prime and equiprime
developments are considered in right permutable, left permutable and medial near-rings.
Some results for right self distributivity, left self distributivity and insertion
factors in near-rings are given.

1. Introduction

Throughout this paper, all near-rings are right near-rings. This paper
considers primeness in near-rings with the multiplicative semi-group
satisfying one of the following identities:

a. \(abc = acb \) (right permutable near-rings)
b. $abc = bac$ (left permutable near-rings)

c. $abcd = acbd$ (medial near-rings).

Birkenmeier and Heatherly [6] called these “the three identities”. They developed a theory of rings satisfying the three identities [5]. A perusal of the near-ring literature reveals many types of near-rings which satisfy one of the three identities. Pilz [12] used the phrase “weakly commutative” for “right permutability” in near-rings. Near-rings which are both right permutable and left permutable are called permutable. Also playing a role in this paper are the identities:

d. $abc = acbc$ (right self-distributive (RSD))

e. $abc = abac$ (left self-distributive (LSD)).

An ideal I of a near-ring N is called a completely prime ideal of N if whenever $ab \in I$, then $a \in I$ or $b \in I$. The study of completely prime ideals in near-rings goes back at least to [13], where such an ideal is called a “prime ideal of type 2”. The ideal I is said to be completely semi-prime if $a^2 \in I$ implies $a \in I$. In [13] Ramakotaiah and Rao defined the concept of a prime ideal of type 1. An ideal I of $N \langle I \triangleleft N \rangle$ is prime of type 1 if for all $x, y \in N \times N \subseteq I$ implies $x \in I$ or $y \in I$. Groenewald [8] used the phrase “3-prime ideal” for “prime ideal of type 1”. An ideal I is a 3-semiprime ideal if whenever $x N x \subseteq I$, then $x \in I$. Booth et al. [7] gave another generalization of prime rings which they called equiprimeness. $P \triangleleft N$ is called equiprime if $a, x, y \in N \ anx - any \in P$ for all $n \in N \ implies \ a \in P \ or \ x - y \in P$. If P is equiprime, then it is 3-prime. If the zero ideal of N is 3-prime (resp. completely prime, equiprime), then we say N is a 3-prime (resp., completely prime, equiprime) near-ring.

Birkenmeier and Heatherly [4] showed that 3-prime (3-semiprime) ideals in an LSD or RSD near-ring are also completely prime.
In [6], these authors proved that 3-prime ideals in a medial near-ring are also completely prime.

The main aim of this paper is to find the conditions which satisfy 3-primeness implies equiprimeness in near-rings with the identities $a, b, c, d \text{ and } e$.

For all undefined terms in near-rings, the reader may refer to Pilz [12].

In general, completely primeness doesn’t imply equiprimeness. For example, if $(N, +)$ is any cyclic group of prime order $p (p > 2)$, define $ab = a$ if $b \neq 0$ and $ab = 0$ if $b = 0$, then N is a near-ring which is completely prime but not equiprime [7].

For a near-ring N, the distributive part of N is the set $\{d \in N : d$ is distributive$\}$ and denoted by N_d.

Lemma 2.1. Let N be near-ring and $P \triangleleft N$. Then $N_d P \subseteq P$.

Proof. Let $n_d \in N_d$. Then $n_d 0 = n_d (0 + 0) = n_d 0 + n_d 0$, i.e., $n_d 0 = 0$. Since $P \triangleleft N$, $n_d p = n_d (p + 0) - n_d 0 \in P$ for every $p \in P$.

Proposition 2.2. Let N be a right permutable near-ring and $P \triangleleft N$. Then P is 3-prime if and only if P is completely prime.

Proof. Note that for any near-ring a completely prime ideal is a 3-prime ideal. Assume N is right permutable, $xy \in P$ and P is a 3-prime ideal. Then $xyN^2 = xNyN \subseteq P$. Now either $x \in P$ or $yN \subseteq P$. If $yN \subseteq P$, then $yN \subseteq P$. Hence $y \in P$. Thus P is completely prime.

Theorem 2.3. Let N be a right permutable near-ring and let $P \triangleleft N$ be such that $N_d \setminus P \neq 0$. If P is a completely prime ideal, then P is equiprime.
Proof. Suppose that for \(a, x, y \in N, anx - any \in P \) for every \(n \in N \). Since \(N \) is right permutable, then \(anx - any = axn - ayn = (ax - ay)n \in P \). Then \(ax - ay \in P \) or \(n \in P \), since \(P \) is completely prime. If \(n \in P \), then \(N = P \), which is a contradiction of choice of \(P \) because \(N_d \setminus P \neq \emptyset \) and \(N_d \setminus P \subseteq N \). Hence \(ax - ay \in P \). By Lemma 2.1. for an \(n \in N_d \setminus P, n_d(ax - ay) = n_dax - n_day \in P \). Since \(N \) is right permutable, \(n_dax - n_day = n_dxa - n_dya = n_d(x - y)a \in P \). Then \(n_d(x - y) \in P \) or \(a \in P \), since \(P \) is completely prime. Since \(n_d \notin P \), \(x - y \in P \) or \(a \in P \). Therefore \(P \) is an equiprime ideal of \(N \).

Corollary 2.4. Let \(N \) be a right permutable near-ring and let \(P \triangleleft N \) be such that \(N_d \setminus P \neq \emptyset \). Then \(P \) is 3-prime if and only if \(P \) is equiprime.

Proof. Since every equiprime ideal is also 3-prime, the proof is seen from Proposition 2.2 and Theorem 2.3.

Theorem 2.3. is illustrated by the following example:

Example (cf. [1]). Let the additive group \((\mathbb{Z}_6, +)\). Under a multiplication given in the following table, \((\mathbb{Z}_6, +, \cdot)\) is a right permutable near-ring. We say \(N = (\mathbb{Z}_6, +, \cdot) \).

<table>
<thead>
<tr>
<th>.</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Let \(P = \{0, 3\} \). Then \(P \) is an ideal of \(N \) and \(4 \in N_d \setminus P \), i.e., \(N_d \setminus P \neq \emptyset \). Then \(N \) and \(P \) satisfy the conditions of Theorem 2.3. It is seen that \(P \) is completely prime and equiprime.
Proposition 2.5. Let N be a left permutable near-ring and $P \triangleleft N$ be such that $NP \subseteq P(\text{or } P^2 = P)$. Then P is 3-prime if and only if P is completely prime.

Proof. Assume N is left permutable, $xy \in P$ and P is a 3-prime ideal such that $NP \subseteq P$. Then $Nxy = xNy \subseteq P$. Thus P is completely prime (If $P^2 = P$, then for every $n \in N$ and for every $p \in P$, $np = np_1p_2 = p_1np_2 \in P$, i.e., $NP \subseteq P$).

Theorem 2.6. Let N be a left permutable near-ring and let P be a proper ideal of N. If P is completely prime, then it is equiprime.

Proof. For $a, x, y \in N$, assume $anx - any \in P$ for all $n \in N$. Since N is left permutable, then $nax - nay \in P$. Let $q \in N - P$. Then $(nax - nay)q = naxq - nayq = nxaq - nyaq = (nx - ny)aq \in P$. Since N is completely prime and $q \notin P$, then $(nx - ny)a \in P$. Now either $nx - ny \in P$ or $a \in P$. If $nx - ny \in P$, then $(nx - ny)q = nxq - nyl = xnl - ynl = (x - y)nl \in P$. Then $(x - y)Nl \subseteq P$. Since P is also 3-prime and $q \notin P$, then $x - y \in P$. Thus P is equiprime.

Corollary 2.7. Let N be a left permutable near-ring and let P be a proper ideal of N such that $NP \subseteq P(\text{or } P^2 = P)$. Then P is 3-prime if and only if P is equiprime.

Proof. It is seen from Proposition 2.5 and Theorem 2.6.

Proposition 2.8. Let N be a permutable near-ring and $P \triangleleft N$. Then P is 3-prime if and only if P is equiprime.

Proof. For $a, x, y \in N$, assume $anx - any \in P$ for all $n \in N$. Since N is permutable, then $anx - any = axn - ayn = xan - yan = xna - yna = (x - y)na \in P$. So $(x - y)Na \subseteq P$. Then either $x - y \in P$ or $a \in P$. Thus P is equiprime, the converse is straightforward.
Proposition 2.9 ([6, Proposition 2.7]). Let \(N \) be a medial near-ring and \(P \triangleleft N \). Then \(P \) is 3-prime if and only if \(P \) is completely prime.

Theorem 2.10. Let \(N \) be a medial near-ring and \(P \triangleleft N \) be such that \(N_d \setminus P \neq \emptyset \). If \(P \) is completely prime, then it is equiprime.

Proof. For \(a \in N - P \), \(x, y \in N \), assume \(anx - any \in P \) for all \(n \in N \). Let \(n_d \in N_d - P \). Since \(N \) is medial and \(N_d P \subseteq P \) by Lemma 2.1, then \(n_d anx - n_d any = n_d anx - n_d any \in P \). Then, \(n_d anx an_d - n_d any an_d = (n_d anx - n_d any) an_d \in P \). Since \(P \) is completely prime and \(an_d \notin P \), then \(n_d anx - n_d any \notin P \). Then \(n_d anx an_d - n_d any an_d = n_d anx n_d - n_d any n_d = n_d(x - y) n_d \in P \). Then \(n_d(x - y) N_n d \subseteq P \). Since \(P \) is completely prime and \(n_d \notin P \), then \(x - y \notin P \). Therefore \(P \) is equiprime.

Corollary 2.11. Let \(N \) be a medial near-ring and \(P \triangleleft N \) be such that \(N_d \setminus P \neq \emptyset \). Then \(P \) is 3-prime if and only if \(P \) is equiprime.

Proof. The proof is seen from Proposition 2.9 and Theorem 2.10.

\(\beta_i(N) \) will denote the intersections of all \(i \)-prime ideals of \(N \) for \(i = 3, \text{equi}, c \) = completely. For more details on the prime radicals \(\beta_i(N) \), the following papers: [2] and [9] are recommended. We have the following:

Corollary 2.12. Let \(N \) be a zero-symmetric near-ring. If \(\beta_c(N) \) is a 0-prime ideal of \(N \), then

(a) If \(N \) is a right permutable (or medial) near-ring and there exists a completely prime ideal \(P \) of \(N \) such that \(N_d \setminus P \neq \emptyset \), then \(\beta_e(N) \subseteq \beta_c(N) \).

(b) If \(N \) is a left permutable near-ring and \(N \neq P \) is a completely prime ideal of \(N \), then \(\beta_e(N) \subseteq \beta_c(N) = \beta_3(N) \).

(c) If \(N \) is a permutable near-ring, then \(\beta_e(N) = \beta_c(N) = \beta_3(N) \).
Proof. (a) It is easily seen that $\beta_c(N)$ is a completely semi-prime ideal of N. Under assumptions $\beta_c(N)$ is a 0-prime ideal of N, then $\beta_c(N)$ is a completely prime ideal of N from [9]. Since P is a completely prime ideal of N such that $N_d \setminus P \neq \emptyset$ and $\beta_c(N) \subseteq P$, then $N_d \setminus \beta_c(N) \neq \emptyset$. Hence $\beta_c(N)$ is an equiprime ideal of N from Theorem 2.3 (for medial, from Theorem 2.10). Therefore $\beta_e(N) \subseteq \beta_c(N). \beta_c(N) = \beta_3(N)$ comes from Proposition 2.2 (for medial, from Proposition 2.9).

(b) $\beta_e(N)$ is a completely prime ideal of N by the proof of (a). Since $N \neq P$ is a completely prime ideal of N and $\beta_c(N) \subseteq P$, then $\beta_c(N) \neq N$. Hence $\beta_e(N)$ is an equiprime ideal of N from Theorem 2.6, i.e., $\beta_e(N) \subseteq \beta_c(N)$. Since N is a zero-symmetric near-ring, then $N\beta_e(N) \subseteq \beta_e(N)$. Therefore $\beta_c(N) = \beta_3(N)$ by Proposition 2.5.

(c) $\beta_c(N)$ is a completely prime ideal of N by the proof of (a). Hence the result follows from Proposition 2.8.

3. Insertion Factors, LSD and RSD Near-Rings

In a near-ring N, an element $x \in N$ is called an insertion factor in N if for every $a, b \in N$ with $a b = axb$. Throughout this section, I denotes the set of all insertion factors in N. Every constant near-ring is an example of $I = N$.

If $n \in N$, the annihilator of n is $(0 : n) = \{x \in N : x n = 0\}$.

Lemma 3.1. Let N be a near-ring.

(i) If $(0 : n) = 0$ for all n in an RSD near-ring N, then $I = N$.

(ii) If $I = N$, then N is both RSD and LSD.

(iii) If N is RSD, then N has strong IFP property [4, Lemma 2.8].

(iv) If N is RSD and simple, then $I = N$.

(v) If N is RSD and simple, then N is LSD.
Let $I = N$ and $P \triangleleft N$. Then P is 3-prime if and only if P is completely prime.

Proof. (i) Assume N is RSD and for every $n \in N(0 : n) = 0$. Then for every $a, b, x \in N$, $abx = axbx$. Then $ab - axb \in (0 : x) = 0$. Hence $I = N$.

(ii) Suppose that $I = N$. Then for every $a, b, c \in N$ $ab = acb$. Hence $abc = acbc$, i.e., N is RSD. Similarly N is LSD.

(iv) If N is RSD and simple, then either $0 : n = 0$ or $0 : n = N$ for all $n \in N$ as a result of (iii). If for all $n \in N(0 : n) = 0$, $I = N$ by (i). If for all $n \in N(0 : n) = N$, then $ab = 0 = anb$ for all $a, b, n \in N$. Hence $I = N$.

(v) From (iv) and (ii).

(vi) Assume $I = N$, $xy \in P$ and P is a 3-prime ideal. Then $xy = xny \in P$ for every $n \in N$. So $xNy \subseteq P$. Thus P is completely prime. The converse is straightforward.

Theorem 3.2. Let $I = N$ and P an ideal of N such that $N_d \setminus P \neq 0$. Then P is 3-prime if and only if P is equiprime.

Proof. Assume P is a completely prime ideal of N and for $a \in N - P$, $x, y \in N$ $anx - any \in P$ for every $n \in N$. Since $N_dP \subseteq P$ by Lemma 2.1., then for $n_d \in N_d - P$ $n_danx - n_dany \in P$. Since $P \triangleleft N$, $n_danxn_d - n_danyn_d = n_dxanxn_d - n_dyanyn_d \in P$. By Lemma 3.1 (ii), N is LSD, then $x(an)n_d = x(an)n_d$ and $y(an)n_d = y(an)n_d$. Then $n_danxn_d - n_dany$ $n_d = n_dxanxn_d - n_dyanyn_d = n_dxann_d - n_dannn_d = n_d(x - y)ann_d \in P$. So $n_d(x - y)anN_d \subseteq P$. Since P is completely prime and $a, n_d \notin P$, then $x - y \in P$. Thus P is equiprime. The remain of the proof is seen from Lemma 3.1 (vi).
References

